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Shock waves in a dense gas
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The revised Enskog theory for a dense monatomic hard sphere gas is used to analyze the problem
of shock waves. The steady profiles of velocity, density, and temperature are obtained, up to the
linearized Burnett hydrodynamic order. A comparison with the results of computer simulations and
of other hydrodynamic approximations is carried out.
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Strong shock waves in fluids are useful in studying far
from equilibrium states. They provide a convenient way
of determining thermodynamic data under extreme con-
ditions. As a matter of fact, these waves occupy a small,
rapidly moving, transition region in space that connects
together two equilibrium states, namely, a relatively cold,
low-pressure region to a relatively hot, high-pressure re-
gion. From a theoretical point of view and in the case
of low-density gases, this problem has been extensively
studied both using a continuum approach [1] as well as
by means of computer simulations [2]. In particular, it is
well known that plane shock waves in these systems can-
not be accurately described by the Navier-Stokes equa-
tions and that the so-called Burnett equations [3] give an
improvement over the Navier-Stokes predictions as com-
pared with simulations [4,5].

The studies pertaining to dense gases are much scarcer,
although they have received some attention recently. A
difficulty in undertaking the continuum approach for such
gases (which does not occur for a dilute gas) is the fact
that, in general, the transport coefficients are not explic-
itly known. Nevertheless, a notable exception is the case
of a hard-sphere dense gas for which the revised Enskog
theory [6] represents an adequate description. In this
framework, the transport coefficients have been deter-
mined up to the linearized Burnett hydrodynamic order
[7]. On the other hand, the propagation of the shock wave
in a dense hard-sphere gas has been numerically studied
using the Enskog kinetic equation [8]. An interesting
question is then whether the agreement between the pre-
dictions of the continuum approach and the simulation
results observed in the low-density case is maintained for
moderate densities. In this paper we will address a par-
tial aspect of this question by analyzing the problem of
planar shock waves in the context of the revised Enskog
theory.

In order to describe the (one-dimensional) hydrody-
namic profiles, it is convenient to consider a reference
frame moving with the shock front. In this frame, the
shock is fixed and achieves a steady profile due to dissi-
pative effects. Consequently, the usual balance equations
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of hydrodynamics imply that

plz)u(z) = const, (1)
P(2) + Toa () + p(z)u?(z) = const , (2)
p@)le(z) + Lu? (@)]u(z)

+u(@)[p(z) + Taan(2)] + q(z) = const . (3)

Here p is the mass density, v is the velocity in the direc-
tion of the shock wave, p is the hydrostatic pressure, 7,
is the longitudinal component of the irreversible pressure
tensor, e is the internal energy per mass unit, and gq is
the heat flux. Labeling the unshocked “cold” equilibrium
state by subscript 0 and the shocked “hot” equilibrium
state by subscript 1 and noting that in these two equi-
librium states 7., and ¢ vanish, Egs. (1)—(3) yield the
well-known Rankine-Hugoniot conditions

PolUp = P1U1 , (4)
Po + Poug =p1+ Plui ) (5)
po(eo + 3ud) +po = p1(er + 3ul) +p1 . (6)

Thus far, both the balance equations and the Rankine-
Hugoniot conditions apply for any fluid system. However,
to get the profiles of density, velocity, and temperature
it is necessary to specify the equation of state and the
internal energy as well as the explicit expressions for the
dissipative fluxes. In the context of the revised Enskog
theory, the equation of state and the internal energy den-
sity for a dense monatomic hard sphere gas read, respec-
tively,

pie) = 2@ e, )
e(z) = gﬂi? R (8)

where kp is the Boltzmann constant, m is the mass
of a molecule, x. is the equilibrium value of the pair
correlation function at the point of contact, and p* =
(2/3)(wp/m)o3, o being the molecular diameter. In ad-
dition, the dissipative fluxes up to the linearized Burnett
order can be written as

5688 ©1995 The American Physical Society



52 BRIEF REPORTS 5689

0 : ST(:);:Z);?(@ pr = % (i)z t;chp* + <§; + ﬁ) (xep™)?
+( ( )+; ( )) T"(z) 9) * (TEE * 1o5n (ch*)3:|
ax(@) + sea(e o) 2

=P gs , (18)
0 14
q(z) = —A\(=)T' () + (gﬂm - ﬂz(w)> u(z), (10)

15 [ p)? 11, (39 8 .
where the corresponding transport coefficients are given Boa=—|— 1+ T XeP +\5 (xeP")

by [7,9] 4p \ Xc 25 25w
9 8
w4, 48 . +(__—)( )3
=2 1+ Zx. = - = XcP
n XC[+5xp+(25+ )(xp) 1gn » 25 257
2
(11) = %g52 . (19)
16 y3
K= 57 xe —(xep*)? = ngn (12)  Here p = (5/1602)(kpTm/7)'/? is the shear viscosity
of a dilute hard-sphere gas [3] and we have introduced
6 2 37 o* 8 the auxiliary quantities g; for later convenience. The ex-
oy = — ( et ) ( _20p X:) (xcp*)? pressions for the fluxes in the Navier-Stokes order are
25T \ pXe 40 x. p obtained from Egs. (9) and (10) by dropping the terms
2

containing u” and T". By substituting Eqgs. (7)-(10)
into the conservation equations (1)—(3) and using the
jump conditions (4)—(6), one derives a closed system
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6 1 2 5 2 of nonlinear differential equations for p(z), u(z), and
ay = —— (—ﬁ) (1 + =Xep ) (XeP*)? = "= 903 » T(z). In order to get specific results, we will consider
57 pT' \ Xe 3 T the Carnahan-Starling approximation [10] for x., namely,
(14)  Xxc(p*) = 8(p* —8)/(p* — 4)3. Also, it is convenient to
scale the distance x by a factor £ to be given below and
L 2 14 introduce the dimensionless functions
as = ( ) { + —Xcp* +—(xcp )?
192 3
+ (2 12571') (er®)
u(s) = =2, (21)
Uo
4 51 *\2 8Xc *2
[1+ Xep" + (25 + 125#) (XeP") ] 3" -
To) =220 (22)

- (E)zgas , (15) S

p with s = z/f. For simplicity, we choose a unit length
related to the mean free path of a dilute gas of hard

1 2 6 3 132 spheres in the cold state, namely, £ = (5m)/(12po02/7).

oy = — (ﬁ.) [1 + —xept + ( + __) (xep*)? In terms of the above variables, the hydrodynamic

PT \ Xe 5 5 25 equations for a steady shock wave up to the linearized
Burnett order become
14 492 s
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In writing these equations use has been made of the rela-
tion R(s) = 1/U(s). Notice that the functions g; depend
on s through the ratio p§/U. Further, Egs. (23) and
(24) involve the values of the density and temperature
of the cold state. Following the work of Frezzotti and
Sgarra [8], we will characterize the hydrodynamic profiles
in terms of Mp = 1/+/(5/3)To and E = (3/v/2)p¢x(p3)-
The parameter Mp represents a kind of upstream Mach
number, while E is the ratio of the molecular diameter
to the reference mean free path at the cold state. Fix-
ing the value of E (which amounts to fixing the value
of the density at the cold end) and the Mach number
Mp (which specifies the value of the temperature at the
cold end) and noting that the corresponding slopes at
the cold end must be zero yields a well posed mathemat-
ical problem. Its solution, however, must be carried out
numerically. Because the mathematical stability of the
system of equations is directional [11], the numerical in-
tegration has to start at the hot equilibrium state. The
conditions at this state follow from the Rankine-Hugoniot
relations (4)—(6). We have used the adaptive procedure
of a computer algebra system [12] to solve Egs. (23) and
(24) setting U(so) = Uy + 6 x 1076, T(so) = T1, and
choosing the initial integration point sp and the slopes
U'(s0) and T'(so) such as to minimize the difference be-
tween U(0) and a prescribed value that fixes the origin
of the shock front, typically (Uo + U1)/2.

A comparison of our results with those of Frezzotti and
Sgarra [8] is displayed in Fig. 1, where we show the re-
duced density profiles for the case F = 0 and Mg = 4.
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FIG. 1. Reduced density profiles R(s) vs position s for
E = 0 and Mg = 4. We consider the results derived
from the Navier-Stokes theory (—), from Holian’s conjecture
(- —-), and from the linearized Burnett theory (- - - -). Cir-
cles correspond to the simulation data taken from Ref. [8].
Note that the origin in this figure has been chosen to coincide
with the one used in the simulation.
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In this figure we have also included the profiles predicted
by the Navier-Stokes equations as well as those obtained
through the use of Holian’s conjecture [13], in which, in
order to go beyond the Navier-Stokes level, the temper-
ature dependence of the transport coefficients is through
the (component of) temperature in the direction of shock
wave propagation rather than the average temperature.
A motivation for considering such a comparison lies on
the fact that, on the one hand, it seems interesting to as-
sess whether the value of Mg affects the trends already
observed by Holian et al. [13], while on the other the ki-
netic equation considered in Ref. [8] is only compatible
with the revised Enskog theory beyond the Navier-Stokes
level for a dilute gas. As can be clearly seen, the Bur-
nett equations improve the agreement with the simula-
tion data as compared to the Navier-Stokes equations.
Regarding the results using Holian’s conjecture, the Bur-
nett predictions are also superior in the hot region, seem-
ingly capturing much better the relaxation mechanism.
However, the performance on the cold side of the shock
front is better if one uses the modified version of the
Navier-Stokes theory. To close the discussion of the re-
sults for a low-density gas, i.e., E = 0, we must point out
that the same qualitative trends are observed at high
Mach numbers.

For the sake of analyzing the difference between the
profiles predicted by the Navier-Stokes and Burnett the-
ories at moderate density, it seems convenient to consider
the limiting case of infinite Mach number. In this case,
the gradients in the hydrodynamic variables are large so
that the deviations from the linear laws (Navier-Stokes)
can be relevant. Unfortunately, to our knowledge, no
simulation results for strong shock waves in a dense hard-
sphere gas are available. Therefore, in Figs. 2 and 3 we
show, for the purposes of illustration only, the reduced ve-
locity and temperature profiles for £ = 0.2 and F = 0.4.
The effect of the nonlinear laws is greater on the velocity
profiles. Both theories lead to the expected result that
the density jump across the shock is reduced as E in-
creases. It appears that the Burnett theory predicts that
as soon as the density is not zero, the symmetry of the
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FIG. 2. Reduced velocity profiles U(s) for Mp = oo

and two values of E. The solid lines correspond to the
Navier-Stokes results while the dashed lines correspond to the
linearized Burnett theory.
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velocity profile observed for a dilute hard-sphere gas [13]
is lost. Note, however, that the results on the cold side of
the front far away from the origin are somewhat open to
question since the numerical instabilities associated with
the system of differential equations of this theory do not
allow convergence of the solution.

In summary, in this paper we have examined the effect
of using the linearized Burnett equations for the anal-
ysis of shock waves in a dense gas within the revised
Enskog theory. While the comparison with the simula-
tion results and other hydrodynamic approximations is
clearcut only in the case of a low-density gas, where the
Burnett equations are superior, we have also predicted
profiles for moderate density and high Mach numbers.
Our expectation is that these predictions stimulate the
performance of simulations under these conditions. The
very recent development of a modification of the direct
simulation Monte Carlo method [14] certainly supports
the likelihood of fulfilling such expectation.
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FIG. 3. Reduced temperature profiles 7(s) for Mg = oo
and two values of E. The solid lines correspond to the
Navier-Stokes results while the dashed lines correspond to the
linearized Burnett theory.
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